Roll No. Total No. of Pages : 02

Total No. of Questions: 07

B.Sc.(IT) (Sem.-2)
MATHEMATICS - II (DISCRETE)

Subject Code: BS-104 Paper ID: [B0406]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

Q1) Write briefly:

- a) There are 20 people in the room who either drink coffee or tea. If 15 drink tea and 8 drink coffee, how many people drink both?
- b) Find the duals of x(y+0) and $\overline{x} \cdot 1 + (\overline{y} + z)$ where $\overline{x} \cdot \overline{y}$ are the complements of x, y.
- c) Write the partition for set $A = \{1, 2, 3, 4, 5, 6\}$.
- d) Give an example of a relation R which is reflexive, symmetric but not transitive.
- e) Write De Morgan Laws for union and intersection.
- f) Let $f: R \to R$ then find the inverse of f(x) = 2x 1.
- g) Let $f(x) = x^2$, g(x) = 2x. Find $f \circ g$ and $g \circ f$ where o means composition of functions.
- h) If $A = \{1, 2\}$, $B = \{a, b, c\}$ then calculate $A \times B$. Is $A \times B = B \times A$? (× is Cartesian product)
- i) What is a power set? Give an example and what is its cardinality?
- j) Let $U = \{0, 1, 2, 3, 4, 5\}$. Represent $A = \{2, 4, 5\}$ with bit string.

SECTION-B

Q2) Prove by Induction that for all natural numbers n.

$$(n+1)^2 + (n+2)^2 + (n+3)^2 + \dots + (2n)^2 = \frac{n(2n+1)(7n+1)}{6}$$

- Q3) a) A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
 - b) In how many ways can 5 children be arranged in a line such that two particular children of them are always together?
- Q4) Solve the recurrence relation for Fibonacci numbers, $f_n = f_{n-1} + f_{n-2}$ given $f_1 = 1$, $f_2 = 1$.
- Q5) What are the contrapositive, the converse and the inverse of the conditional statement "The home team wins whenever it is raining"?
- Q6) Prove the following logical equivalence of distributive law $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$.
- Q7) Show that power set P(S) has cardinality of 2^n .